Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Plant-microbe interactions are critical to ecosystem resilience and substantially influence crop production. From the perspective of plant science, two important focus areas concerning plant-microbe interactions include: 1) understanding plant molecular mechanisms involved in plant-microbe interfaces and 2) engineering plants for increasing plant disease resistance or enhancing beneficial interactions with microbes to increase their resilience to biotic and abiotic stress conditions. Molecular biology and genetics approaches have been used to investigate the molecular mechanisms underlying plant responses to various beneficial and pathogenic microbes. While these approaches are valuable for elucidating the functions of individual genes and pathways, they fall short of unraveling the complex cross-talk across pathways or systems that plants employ to respond and adapt to environmental stresses. Also, genetic engineering of plants to increase disease resistance or enhance symbiosis with microbes has mainly been attempted or conducted through targeted manipulation of single genes/pathways of plants. Recent advancements in synthetic biology tool development are paving the way for multi-gene characterization and engineering in plants in relation to plant-microbe interactions. Here, we briefly summarize the current understanding of plant molecular pathways involved in plant interactions with beneficial and pathogenic microorganisms. Then, we highlight the progress in applying plant synthetic biology to elucidate the molecular basis of plant responses to microbes, enhance plant disease resistance, engineer synthetic symbiosis, and conduct in situ microbiome engineering. Lastly, we discuss the challenges, opportunities, and future directions for advancing plant-microbe interactions research using the capabilities of plant synthetic biology.more » « lessFree, publicly-accessible full text available June 1, 2026
-
Taylor, John W. (Ed.)ABSTRACT Potent antimicrobial metabolites are produced by filamentous fungi in pure culture, but their ecological functions in nature are often unknown. Using an antibacterial Penicillium isolate and a cheese rind microbial community, we demonstrate that a fungal specialized metabolite can regulate the diversity of bacterial communities. Inactivation of the global regulator, LaeA, resulted in the loss of antibacterial activity in the Penicillium isolate. Cheese rind bacterial communities assembled with the laeA deletion strain had significantly higher bacterial abundances than the wild-type strain. RNA-sequencing and metabolite profiling demonstrated a striking reduction in the expression and production of the natural product pseurotin in the laeA deletion strain. Inactivation of a core gene in the pseurotin biosynthetic cluster restored bacterial community composition, confirming the role of pseurotins in mediating bacterial community assembly. Our discovery demonstrates how global regulators of fungal transcription can control the assembly of bacterial communities and highlights an ecological role for a widespread class of fungal specialized metabolites. IMPORTANCE Cheese rinds are economically important microbial communities where fungi can impact food quality and aesthetics. The specific mechanisms by which fungi can regulate bacterial community assembly in cheeses, other fermented foods, and microbiomes in general are largely unknown. Our study highlights how specialized metabolites secreted by a Penicillium species can mediate cheese rind development via differential inhibition of bacterial community members. Because LaeA regulates specialized metabolites and other ecologically relevant traits in a wide range of filamentous fungi, this global regulator may have similar impacts in other fungus-dominated microbiomes.more » « less
-
Galperin, Michael Y. (Ed.)ABSTRACT Membrane potential homeostasis is essential for cell survival. Defects in membrane potential lead to pleiotropic phenotypes, consistent with the central role of membrane energetics in cell physiology. Homologs of the progestin and AdipoQ receptors (PAQRs) are conserved in multiple phyla of Bacteria and Eukarya . In eukaryotes, PAQRs are proposed to modulate membrane fluidity and fatty acid (FA) metabolism. The role of bacterial homologs has not been elucidated. Here, we use Escherichia coli and Bacillus subtilis to show that bacterial PAQR homologs, which we name “TrhA,” have a role in membrane energetics homeostasis. Using transcriptional fusions, we show that E. coli TrhA (encoded by yqfA ) is part of the unsaturated fatty acid biosynthesis regulon. Fatty acid analyses and physiological assays show that a lack of TrhA in both E. coli and B. subtilis (encoded by yplQ ) provokes subtle but consistent changes in membrane fatty acid profiles that do not translate to control of membrane fluidity. Instead, membrane proteomics in E. coli suggested a disrupted energy metabolism and dysregulated membrane energetics in the mutant, though it grew similarly to its parent. These changes translated into a disturbed membrane potential in the mutant relative to its parent under various growth conditions. Similar dysregulation of membrane energetics was observed in a different E. coli strain and in the distantly related B. subtilis . Together, our findings are consistent with a role for TrhA in membrane energetics homeostasis, through a mechanism that remains to be elucidated. IMPORTANCE Eukaryotic homologs of the progestin and AdipoQ receptor family (PAQR) have been shown to regulate membrane fluidity by affecting, through unknown mechanisms, unsaturated fatty acid (FA) metabolism. The bacterial homologs studied here mediate small and consistent changes in unsaturated FA metabolism that do not seem to impact membrane fluidity but, rather, alter membrane energetics homeostasis. Together, the findings here suggest that bacterial and eukaryotic PAQRs share functions in maintaining membrane homeostasis (fluidity in eukaryotes and energetics for bacteria with TrhA homologs).more » « less
-
Petersen, Jillian Michelle (Ed.)ABSTRACT Bacterial chemotaxis affords motile bacteria the ability to navigate the environment to locate niches for growth and survival. At the molecular level, chemotaxis depends on chemoreceptor signaling arrays that interact with cytoplasmic proteins to control the direction of movement. In Azospirillum brasilense , chemotaxis is mediated by two distinct chemotaxis pathways: Che1 and Che4. Both Che1 and Che4 are critical in the A. brasilense free-living and plant-associated lifestyles. Here, we use whole-cell proteomics and metabolomics to characterize the role of chemotaxis in A. brasilense physiology. We found that mutants lacking CheA1 or CheA4 or both are affected in nonchemotaxis functions, including major changes in transcription, signaling transport, and cell metabolism. We identify specific effects of CheA1 and CheA4 on nitrogen metabolism, including nitrate assimilation and nitrogen fixation, that may depend, at least, on the transcriptional control of rpoN , which encodes RpoN, a global regulator of metabolism, including nitrogen. Consistent with proteomics, the abundance of several nitrogenous compounds (purines, pyrimidines, and amino acids) changed in the metabolomes of the chemotaxis mutants relative to the parental strain. Further, we uncover novel, and yet uncharacterized, layers of transcriptional and posttranscriptional control of nitrogen metabolism regulators. Together, our data reveal roles for CheA1 and CheA4 in linking chemotaxis and nitrogen metabolism, likely through control of global regulatory networks. IMPORTANCE Bacterial chemotaxis is widespread in bacteria, increasing competitiveness in diverse environments and mediating associations with eukaryotic hosts ranging from commensal to beneficial and pathogenic. In most bacteria, chemotaxis signaling is tightly linked to energy metabolism, with this coupling occurring through the sensory input of several energy-sensing chemoreceptors. Here, we show that in A. brasilense the chemotaxis proteins have key roles in modulating nitrogen metabolism, including nitrate assimilation and nitrogen fixation, through novel and yet unknown regulations. These results are significant given that A. brasilense is a model bacterium for plant growth promotion and free-living nitrogen fixation and is used as a bio-inoculant for cereal crops. Chemotaxis signaling in A. brasilense thus links locomotor behaviors to nitrogen metabolism, allowing cells to continuously and reciprocally adjust metabolism and chemotaxis signaling as they navigate gradients.more » « less
-
Abstract Metaproteomics has matured into a powerful tool to assess functional interactions in microbial communities. While many metaproteomic workflows are available, the impact of method choice on results remains unclear. Here, we carry out a community-driven, multi-laboratory comparison in metaproteomics: the critical assessment of metaproteome investigation study (CAMPI). Based on well-established workflows, we evaluate the effect of sample preparation, mass spectrometry, and bioinformatic analysis using two samples: a simplified, laboratory-assembled human intestinal model and a human fecal sample. We observe that variability at the peptide level is predominantly due to sample processing workflows, with a smaller contribution of bioinformatic pipelines. These peptide-level differences largely disappear at the protein group level. While differences are observed for predicted community composition, similar functional profiles are obtained across workflows. CAMPI demonstrates the robustness of present-day metaproteomics research, serves as a template for multi-laboratory studies in metaproteomics, and provides publicly available data sets for benchmarking future developments.more » « less
-
null (Ed.)Human life intimately depends on plants for food, biomaterials, health, energy, and a sustainable environment. Various plants have been genetically improved mostly through breeding, along with limited modification via genetic engineering, yet they are still not able to meet the ever-increasing needs, in terms of both quantity and quality, resulting from the rapid increase in world population and expected standards of living. A step change that may address these challenges would be to expand the potential of plants using biosystems design approaches. This represents a shift in plant science research from relatively simple trial-and-error approaches to innovative strategies based on predictive models of biological systems. Plant biosystems design seeks to accelerate plant genetic improvement using genome editing and genetic circuit engineering or create novel plant systems through de novo synthesis of plant genomes. From this perspective, we present a comprehensive roadmap of plant biosystems design covering theories, principles, and technical methods, along with potential applications in basic and applied plant biology research. We highlight current challenges, future opportunities, and research priorities, along with a framework for international collaboration, towards rapid advancement of this emerging interdisciplinary area of research. Finally, we discuss the importance of social responsibility in utilizing plant biosystems design and suggest strategies for improving public perception, trust, and acceptance.more » « less
An official website of the United States government
